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Abstract : - The purpose of this paper is to derive some subordination and superordination results for certain 
normalized analytic functions in the open unit disk, acted upon by Carlson–Shaffer operator. Relevant 

connections of the results, which are presented in the paper, with various known results are also considered  
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I. INTRODUCTION 

Let H  be the class of functions analytic in the open unit disk   1:  zz  . Let   naH ,  be the 

subclass of H consisting of functions of the form 
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Let A  be the subclass of H consisting of functions of the form 
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 With a view to recalling the principle of subordination between analytic functions, let the 

functions f and g  be analytic in  .Then we say that the function f is subordinate to g if there exists a 

Schwarz function  ,z  analytic in   with 

  00    and     1z        ,z  

such that     
                            

    zgzf 
    
  .z

 
 We denote this subordination by                                         

gf    or     zgzf    z . 

In particular, if the function g is univalent in , the above subordination is equivalent  to  

                                              00 gf   and      gf  . 

Let Hhp ,  and let
 

  CCztsr 3:;,,  . If p and       zzpzzpzzp ;,, 2   are univalent and 

if p satisfies the second-order superordination  

        zzpzzpzzpzh ;,, 2    ,                                                          (1) 

 

 then p  is a solution of the differential superordination (1). (If f subordinate to ,F  then F  is called 

to be superordinate to f .) An analytic function q   is called a subordinant  if pq   for all p satisfying (1).  An 

univalent subordinant q~  that satisfies qq ~  for all subordinants q of (1) is said to be the best subordinant. 

Recently, Miller and Mocanu [7] obtained conditions on qh ,  and  or which the following implication holds  

             .;,, 2 zpzqzzpzzpzzpzh    

 Using the results of Miller and Mocanu [7], Bulboaca [2] considered certain classes of first-  

order differential superordinations as well as superordination-preserving integral operators [3]. Ali et al. [1] 
have used the results of Bulboaca [2] and obtained sufficient conditions for certain normalized analytic 

functions  zf to satisfy 

 
 
 

  ,21 zq
zf

zfz
zq 



 



On sandwich results for some subclasses of analytic functions involving certain linear operator 

     www.iosrjen.org                                                    34 | P a g e  

where 1q  and  2q are given univalent functions in   with   101 q  and   .102 q Shanmugam et al. [9] 

obtained sufficient conditions for a normalized analytic functions  zf  to satisfy  
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and 

 where 1q  and  2q are given univalent functions in   with   101 q  and   .102 q
 

While Obradovic and Owa [8] obtained subordination results with the quantity . A detailed investing- ation of 

starlike functions of complex order and convex functions of complex order using Briot – Bouquet differential 

subordination technique has been studied very recently by Srivastava and Lashin [10] (see also [11]) . 

                                                                                                 
Let the function ϕ(a, c; z) be given by     
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where  nx   is the Pochhammer symbol defined by 
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Corresponding to the function   ,;, zca  Carlson and Shaffer [4] introduced a linear operator 

L(a, c), which is defined by the following Hadamard product (or convolution): 
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We note that  

                                ,1,1,1,2,, zfDzfLzfzzfLzfzfaaL  

 where  zfD
 is the Ruscheweyh derivative of  zf .

  

 The main object of the present sequel to the aforementioned works is to apply a method based on 

the differential subordination in order to derive several subordination results involv- ing the Carlson–Shaffer 

Operator. Furthermore, we obtain the previous results of Srivastava  
and Lashin [10] and Obradović and Owa [8] as special cases of some of the results presented here. 
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II. PRELIMINARIES 
In order to prove our subordination and superordination  results, we make use of the following known results. 

Definition 2.1 [7 Definition 2, p. 817]   Denote by Q   the set of all functions  zf that are analytic and  

injective  on  fE , where 

   












z

zffE lim: , 

and  are such that   0 f  for  fE  . 

 

Theorem 2.2[6,Theorem 3.4h , p.132]  Let the function q be univalent in the open unit disk and   and   be 

analytic in a domain D containing   q with   0  when   q . Set       zqzqzzQ   , 

      zQzqzh   . Suppose that  

 (1)
 
 zQ  is starlike univalent in  , and 
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 (2)      0/Re  zQzhz  for   z  . 

If  

               zqzqzzqzpzpzzp    , 

then    zqzp   and q is best dominant.   

   

Lemma 2.3 [10]   Let g  be a convex function in   and  let 

      ,zgzmzgzh    

where 0  and  m  is a positive integer. 

If      ....0  m

m zpgzp  is analytic in   and 

        ,,  zzhzpzzp 
 

 then 

   zgzp   ,   z  

and this result is sharp. 

 

Lemma 2.4 [9, Lemma 1, p,71]  Let h  be a convex function with   ah 0  and  let C   with   0Re  . 

If  Hp  with   ap 0  and  
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The function q is convex and  is the best dominant .   

 

Theorem 2.5 [2]  Let the function q be convex univalent in the open unit disk  and  and   be analytic in a 

domain D containing  q . Suppose that  

         0/Re1  zqzq   for    z  , 

       zqzqz 2  is starlike univalent  in  . 

If     QqHp  1,0 , with   ,Dp  and        zpzpzzp    is univalent  in , and   

                                     zpzpzzpzqzqzzq     ,                                    (2) 

then     zpzq    and q  is the best subordinant . 

 

III.  SUBORDINATION AND SUPERORDINATION FOR ANALYTIC FUNCTIONS 
 We begin by proving involving differential  subordination between analytic functions .  

Lemma3.1  If    zf , then 
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These give that  
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this proves lemma 3.1 . 

 

Theorem 3.2  Let the function  zq be analytic  and univalent in   such that   0zq . Suppose  that 

   zqzqz /  is starlike univalent in  . Let  
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If  q  satisfies  the following subordination : 
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and  q  is the best dominant . 

Proof   Let the function   zp  be defined  by  
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so that, by a straightforward computation , we have  
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By using lemma3.1we deduce that 
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By setting  

                            2    and       ,



    

it can be easily observed  that    is analytic in C ,    is analytic in
 

 0\C  and  

that     0\0 C  . 

Also, by letting  
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we find that  zQ  is starlike univalent in   and that  
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The assertion (6) of Theorem 3.2 now follows by an application of Theorem 2.2. 

                  

 

    For the choices   11,1/1  ABBzAzzq   and                     

    ,10,1/1  


zzzq in Theorem 3.2, we get the following results (Corollaries 3.3 and  

3.4 ).  

Corollary 3.3   Assume that (3) holds. If  Af  , and  
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where  fca ,,,,,,,   is as defined in (4), 

then
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and  BzAz  1/1 is the best dominant. 

Corollary3. 4  Assume that (3) holds. If  Af  , and     
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and  zz  1/1 is the best dominant.  

     For a special case   Azezq  , with    A , Theorem 3.2 readily yields the following. 

Corollary3. 5    Assume that (3) holds. If Af  , and                 
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  where  fca ,,,,,,,   is as defined  in (4), then  
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Remark 3.6 Taking  /1,1,0,1  ca  in corollary 3.5, we get the  

 

result obtained by Obradovic and Owa [8].  

    For a special case  

when        ,/11,1,0,1,0\1/1
2

bandcaCbzzq
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Theorem 3.2 reduces at once to the following known  result obtained by Srivastava and Lashin [10].  

Corollary3. 7  Let be a non-zero complex number. If  Af  , and   
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 in Theorem  3.2, we get the 

following  known  result obtained by Obradovic and Owa [8].   

Corollary 3.8   Let .11  AB  Let BA,,  satisfy  the relation either           
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     With the help of Lemma 2.4,  we now prove the following theorem . 
 

Theorem 3.9   Let     00,10,  hhHh  which satisfy the inequality 
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If  mAf   satisfies the differential subordination                              
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The function g  is convex and  is the best dominant . 

Proof   Let the function  zp be defined  by  
 

 
   

z

zfckaL
zp

,1
             .0;,   zzZk                          (14) 

A straightforward computation gives  
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By using lemma3.1we deduce that       
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The assertion of Theorem 3.9 now follows from Lemma 2.4. 

     For the choice of  k=1, we get  

 

 

Theorem 3.10   If  mAf   satisfies the differential subordination  
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The function g  is convex and  is the best dominant .   

 

Proof    Let the function  zp be defined  by     
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By using lemma3.1we deduce that 
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The assertion of Theorem 3.10  now follows from Lemma 2.4. 

 

     Next, by using Lemma 2.3,  we prove the following theorem .  

 

Theorem 3.11  Let g  be a convex function with     .10 g  Let h  be a function , such that  
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and this result is sharp. 

Proof   The proof of the theorem is much akin to the proof of Theorem 3.12 and hence we omit the details 

involved. 

Next, by appealing to Theorem 2.5 of the preceding section, we prove Theorem 3.12.  

  

Theorem 3.12   1  Let  zq  be analytic  and convex  univalent in    such that   0zq and      zqzqz /  
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and q   is the best subordinant  where  fca ,,,,,,,   is as defined  in (4).  

Proof    By setting  
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Since  q  is convex (univalent ) function it follows that ,  
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 The assertion (26) of Theorem 3.12 follows by an application of Theorem 2.5.  

We remark here that Theorem 3.12 can easily be restated , for different choice of the function  zq  . Combining 

Theorem 3.2 and Theorem 3.12, we get the following sandwich theorem . 
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